This is essentially a wrapper around the model-creation and -modification functionality in pharmr/Pharmpy.
Usage
create_model(
route = c("auto", "oral", "iv"),
lag_time = FALSE,
n_transit_compartments = 0,
bioavailability = FALSE,
n_cmt = 1,
elimination = c("linear", "michaelis-menten"),
iiv = "all",
iiv_type = "exp",
ruv = c("additive", "proportional", "combined", "ltbs"),
covariates = NULL,
data = NULL,
name = NULL,
estimation_method = c("foce", "saem"),
estimation_options = list(),
uncertainty_method = c("sandwich", "smat", "rmat", "efim", "none"),
tool = c("nonmem", "nlmixr", "nlmixr2"),
tables = c("fit"),
auto_init = TRUE,
auto_stack_encounters = TRUE,
mu_reference = FALSE,
settings = list(),
verbose = FALSE
)
Arguments
- route
route of administration, either
oral
oriv
- lag_time
add a lag time, default is
FALSE
- n_transit_compartments
number of transit-compartments for absorption model. Default is
0
.- bioavailability
Add a bioavailability parameter? Default is
FALSE
. Will add using a logit function.- n_cmt
number of elimination and distribution compartments. Default is 1, i.e. no peripheral distributions.
- elimination
elimination type, either
linear
ormichaelis-menten
.- iiv
either
character
or alist
object. Ifcharacter
, should be either "basic" (only CL and V parameters) or "all" (IIV on all parameters). If specified as a list object, it should contain the IIV magnitude (on SD scale) for parameters, e.g.list(CL = 0.2, V = 0.3)
.- ruv
one of
proportional
,additive
, orcombined
.- data
data.frame as input to NONMEM / nlmixr.
- name
name of model
- estimation_method
estimation method.
- estimation_options
options for estimation method, specified as list, e.g.
NITER
orISAMPLE
.- uncertainty_method
Compute uncertainty for parameter estimations. One of
sandwich
(default),smat
,fmat
,efim
.- tool
output model type, either
nonmem
ornlmixr
- tables
which pre-specified tables to add, defaults to
parameters
andfit
tables.- auto_init
automatically update initial estimates to reasonable values based on a crude assessment of the PK data. Default is
TRUE
.- auto_stack_encounters
detects if TIME within an individual is decreasing from one record to another, which NONMEM cannot handle. If this happens, it will add a reset event (EVID=3) at that time, and increase the TIME for subsequent events so that NONMEM does not throw an error. It will increase the time for the next encounter to the maximum encounter length across all subjects in the dataset (rounded up to 100). If no decreasing TIME is detected, nothing will be done (most common case). This feature is useful e.g. for crossover trials when data on the same individual ispresent but is included in the dataset as time-after-dose and not actual time since first overall dose.
- mu_reference
MU-reference the model, useful for SAEM estimation method.
- settings
additional settings for model creation and model estimation. TBD
- verbose
verbose output?
- iiv_effect
either
character
orlist
. If character, one ofc("exp", "add", "prop", "log", "re_log")
. Iflist
, should specify for each parameter the effect type, e.g.list(CL = "add", V = "exp")
. Default is"exp"
for all.