Perform an NCA based on a NONMEM-style dataset
Arguments
- data
data.frame with time and dv columns
- dose
dose amount
- tau
dosing frequency, default is 24.
- method
`linear`, `log_linear` (default), or `log_log`
- scale
list with scaling for auc and concentration (`conc`)
- dv_min
minimum concentrations, lower observations will be set to this value
- t_inf
infusion time, defaults to 0
- fit_samples
vector of sample indexes used in fit to calculate elimination rate, e.g. `c(3,4,5)`. If not specified (default), it will evaluate which of the last n samples shows the largest adjusted R^2 when log-transformed data is fitted using linear regression, and use those samples in the estimation of the elimination rate.
- weights
vector of weights to be used in linear regression (same size as specified concentration data), or function with concentration as argument.
- extend
perform an 'extended' NCA, i.e. for the calculation of the AUCs, back-extend to the expected true Cmax to also include that area.
- has_baseline
does the included data include a baseline? If `FALSE`, baseline is set to zero.
- route
administration route, `iv` (intravenous, default), `oral`, `sc` (sub-cutaneous), or `im` (intra-muscular).
Value
Returns a list of three lists:
pk
Lists pk parameters.
kel
: elimination constantt_12
: half-lifev
: distribution volumecl
: clearance
descriptive
Lists exposure parameters.
cav_t
: the average concentration between the first observation and the last observation without extrapolating to taucav_tau
: the average concentration from 0 to taucmin
: the extrapolated concentration attime = tau
c_max_true
: only available ifextend = TRUE
, the extrapolated peak concentrationc_max
: only available ifextend = FALSE
, the observed maximum concentrationauc_inf
: the extrapolated AUC as time goes to infinityauc_24
: the extrapolated AUC after 24 hours, provided no further doses are administeredauc_tau
: the extrapolated AUC at the end of the dosing intervalauc_t
: the AUC at the time of the last observation
settings
Lists dosing information.
dose
: dose quantitytau
: dosing interval
Examples
data <- data.frame(time = c(0, 2, 4, 6, 8, 12, 16),
dv = c(0, 10, 14, 11, 9, 5, 1.5))
nca(data, t_inf = 2)
#> value
#> kel 0.1807
#> t_12 3.8358
#> v 4.1763
#> cl 0.7547
#> tmax 4.0000
#> cav_t 8.2119
#> cav_tau 5.7390
#> c_min 0.3534
#> c_max_true 20.0949
#> auc_inf 139.6910
#> auc_24 137.7354
#> auc_tau 137.7354
#> auc_t 131.3902
#> auc_pre 14.0000