Perform a grid search for a particular target by simulating a grid of doses
dose_grid_search.RdSet refine = TRUE if the model is nonlinear so that the grid search happens iteratively.
Usage
dose_grid_search(
  est_model = NULL,
  regimen,
  target_design = create_target_design(targettype = "conc", targetvalue = 10, time = 24),
  auc_comp = NULL,
  pta = NULL,
  omega = NULL,
  ruv = NULL,
  dose_update = 1,
  grid = seq(1, 6000, by = 10),
  grid_type = "dose",
  dose_resolution = 1,
  refine = NULL,
  refine_range = c(0.7, 1.4),
  check_boundaries = TRUE,
  max_dose = NULL,
  min_dose = NULL,
  md = list(),
  parameters = NULL,
  covariates = NULL,
  verbose = FALSE,
  ...
)Arguments
- est_model
 model used for estimation ("clinician facing")
- regimen
 PKPDsim regimen object
- target_design
 object specifying target design, created using function
create_target_design()- auc_comp
 auc compartment (starting from 1, R-style not C-style!)
- pta
 probability of target attainment, list with arguments
typeandvalue, also requiresomegaif non-NULL. IfNULL, will just aim for specific conc or auc.- omega
 IIV matrix, for estimation model, for probability of target attainment target types.
- ruv
 list specifying residual error for estimation model:
list(prop = 0.1, add = 1.5), for probability of target attainment target types.- dose_update
 update dose from which dose?
- grid
 vector specifying doses or intervals to use as test grid, Example:
seq(from = 50, to = 500, by = (500 - 50) / 10)- grid_type
 either "dose" or "interval"
- dose_resolution
 to which precision should the output be rounded (e.g. 50), useful when in practice only a specific set of dose units. Can of course also be controlled by altering the grid.
- refine
 should the found optimal dose be refined more? If not specified, will refine if the model linearity (in
attr(model, "misc")) is not described as"linear"- refine_range
 after initial optimization, should a second refinement step be implemented? If
refine_rangeis specified e.g. asc(0.9, 1.1)then it will implement a second optimization using a grid spanning from 90% to 110% of the initial optimal dose. Useful only for non-linear models.- check_boundaries
 if optimal dose is at lower/upper boundary of grid, should grid be expanded?
- max_dose
 maximum dose cap
- min_dose
 minimum dose cap
- md
 metadata object (only needed if we have to use
get_quantity_from_variable()to generate target value)- parameters
 list of model parameters
- covariates
 covariates object
- verbose
 verbose output?
- ...
 passed on to PKPDsim function