Skip to contents

All functions

adjust_dose_checks()
Checks for dose_update_number obtained from dose_update scheme
calc_auc_from_sim()
Get AUC from a simulation
check_when()
Check / clean when element
collect_tdms()
Simulate TDM collection
create_cov_object()
Create a list of PKPDsim covariates for modeling
create_design()
Create timing designs (static or adaptive) for use in simulated trial, such as sampling designs, target designs etc.
create_initial_regimen_design()
Creates a design for the initial regimen for patients in the trial
create_model_design()
Create a design for models to be used
create_regimen_update_design()
Create scheme for updating dose or interval during dose optimization trial
create_sampling_design()
Function for creating sampling designs.
create_target_design()
Create target object
create_trial_design()
Combine all sub-designs into the overall trial design object
dose_grid_search()
Perform a grid search for a particular target by simulating a grid of doses
calc_concentration_from_regimen() calc_auc_from_regimen()
Calculate exposure metrics
filter_rows_0_100()
Filter rows with values 0 or 100
generate_iiv() generate_ruv()
Generate variability terms
get_dose_update_core()
Core function to calculate the dose update number for a row in a regimen update data.frame
get_dose_update_numbers_from_design()
Get dose number to update dose/interval at from the regime update scheme and a provided regimen.
get_quantity_from_variable()
Get quantities from variables in sim results
get_sampling_time_core()
Core function to calculate the sampling time for a row in a sampling schema data.frame.
get_sampling_times_from_scheme()
Calculate sampling times based on a given sampling schema and a regimen.
is_on_target()
Checks if a value (or vector of values) is within the specified target range
is_single_valid_number()
Checks that an object represents a single finite number
map_adjust_dose()
Adjust doses to achieve a target metric using MAP Bayesian estimation.
map_adjust_interval()
Adjust intervals to achieve a target metric using MAP Bayesian estimation by adapting the dosing interval
mipd_target_types()
Accepted PK/PD exposure targets
mipdtrial mipdtrial-package
MIPDtrial package
model_based_starting_dose()
Model-based starting dose
parse_spec_file_to_trial_design()
Parse YAML spec file to trial design
round_to_multiple()
Round to a multiple of any number (e.g. round to the nearest 5, 10, 100)
run_trial()
Run an MIPD trial
sample_and_adjust_by_dose()
Adjust dosing using MIPD on TDMs at specified dose numbers
simulate_dose_interval()
Simulate different doses/intervals in a dose/interval grid
simulate_fit()
Get MAP Bayesian parameters
update_regimen()
Update a regimen with a new dose
weight_based_starting_dose()
Weight-based starting dose (e.g., mg/kg)