Generate variability terms
generate_variability.RdTo enable comparison of multiple treatment conditions in a reproducible manner, it is recommended that interindividual variability terms and residual variability terms be generated prior to all analyses. This design also allows for resuming a simulation part-way through, when the random seed position may not be known.
Generate IIV for one or more individuals and one or more iterations per individual according to the supplied omega matrix.
Generate unexplained variability for one or more individuals and one or more iterations per individual according to the supplied proportional and additive error.
Usage
generate_iiv(
  sim_model,
  omega,
  parameters,
  ids = 1,
  n_iter = 1,
  seed = NULL,
  ...
)
generate_ruv(tdm_sample_time, prop, add, ids = 1, n_iter = 1, seed = NULL)Arguments
- sim_model
 model used for simulated patient response ("truth").
- omega
 omega matrix, with covariance terms. See
PKPDsim::simfor details.- parameters
 simulation model parameters (population estimates), a named list.
- ids
 vector of ids, can be numeric or character.
- n_iter
 number of sets of individual parameters to generate per id
- seed
 set random seed
- ...
 arguments passed on to PKPDsim::sim
- tdm_sample_time
 time of tdm, since start of treatment course (or other vector of identifiers to use for each tdm). For example, for three days of daily dosing and peak-trough sample collection,
c(1, 24, 25, 48, 49, 73).- prop
 proportional error
- add
 additive error
Value
generate_iiv a data frame with columns id (corresponding to
ids), iter ( numbers 1 to n_iter) and columns for each individual
parameter value.
generate_ruv returns a data frame with identifier columns of
tdm_number, iteration, id, plus columns for proportional (prop) and
additive (add) error.
Details
This family of functions generates variability terms to allow for reproducible analyses. Using multiple iterations per individual ID allows for PK variability within one set of covariates.
By default, generate_iivassumes a log-normal (exponential) distribution.
See PKPDsim::sim documentation for the omega_type argument to provide
finer grain control.
generate_ruv Assumes a normal distribution for proportional and
additional error.