Adjust dosing using MIPD on TDMs at specified dose numbers
sample_and_adjust_by_dose.Rd
Doses are iteratively adjusted for the specified dose numbers. Estimation is
performed by MAP Bayesian estimation, and simulation is used to identify the
dose most likely to reach the specified target. See dose_grid_search
for
dose-finding logic. Optionally, disparate models can be used for simulation
and estimation, to allow for intentional model misspecification. Covariates
supplied must support both models. True patient parameters (pars_true_i
)
must match the model used for simulation.
Usage
sample_and_adjust_by_dose(
regimen_update_design,
sampling_design,
target_design,
regimen,
covariates = NULL,
pars_true_i,
sim_model,
sim_ruv = NULL,
verbose = FALSE,
accumulate_data = TRUE,
...
)
Arguments
- regimen_update_design
a data.frame with scheme with details on how and when to update the regimen in the MIPD trial. Schemes are created using
create_regimen_update_design()
.- sampling_design
a data.frame with a sampling scheme, created using
create_sampling_design()
.- target_design
target design created using
create_target_design()
- regimen
PKPDsim regimen object, containing initial dosing regimen.
- covariates
named list of PKPDsim covariates.
- pars_true_i
PK parameters for the individual. See
generate_iiv
.- sim_model
model to use for simulating "true" patient response.
- sim_ruv
residual variability for
sim_model
. Named list for proportional (prop
) and additive (add
) error.- verbose
verbose output?
- accumulate_data
if
TRUE
, will use all available data up until the adjustment timepoint. If set toFALSE
, will use only the data since the last adjustment timepoint and the current one.- ...
arguments passed on to
simulate_fit
or dose_optimization_method function.