Introduction
While the PKPDsim
R package does not include
functionality to perform population estimation within the package, it
does offer a convenient translator to be able to use the nlmixr2
R
package for parameter estimation. nlmixr2
allows
fitting of population PK-PD models using common algorithms applied in
pharmacometrics, such as FOCE and SAEM. For
installation and usage of nlmixr2
, please refer to the
documentation in the nlmixr2
package and on the respective
website.
Translation
Under the hood, nlmixr2
uses the rxode2
R
package to perform PKPD model simulations, and which is very similar to
PKPDsim
. The model syntax for both rxode2
and
nlmixr2
compared to PKPDsim
are also very
similar, making translation fairly straightforward. A model translator
function has therefore been included in PKPDsim
that allows
translation of a PKPDsim
model to nlmixr2
syntax:
mod <- new_ode_model("pk_1cmt_iv")
f <- pkpdsim_to_nlmixr(
model = mod,
parameters = list(CL = 5, V = 50),
omega = c(0.1, 0.05, 0.1),
res_var = list(prop = 0.1, add = 0.1),
log_transform = TRUE
)
The returned object f
generated by
pkpdsim_to_nlmixr()
is an object that defines the required
model and parameter definitions in nlmixr
syntax:
f
## function ()
## {
## ini({
## logCL <- log(5)
## logV <- log(50)
## err_prop <- c(0, 0.1, 1)
## err_add <- c(0, 1, 10)
## eta_CL + eta_V ~ c(0.1, 0.05, 0.1)
## })
## model({
## CL <- exp(logCL + eta_CL)
## V <- exp(logV + eta_V)
## d/dt(A1) = -(CL/V) * A1
## y = A1/V
## y ~ prop(err_prop) + add(err_add)
## })
## }
## <environment: 0x562841e270b8>
A full code example is included below.
Note: both nlmixr and the nlmixr-translator in PKPDsim are still under active development. Syntax and results may therefore change.
Example
library(tidyverse)
library(nlmixr2)
## Define parameters
par <- list(CL = 5, V = 50)
ruv <- list(prop = 0.1, add = 1)
omega <- c(0.1,
0.05, 0.1)
## Simulate data
t_obs <- c(8, 23.5, 25, 71.5)
n <- 50
regimen <- new_regimen(
amt = 1500,
n = 4,
interval = 24
)
conc <- sim(
ode = mod,
regimen = regimen,
parameters = par,
omega = omega,
only_obs = TRUE,
t_obs = t_obs,
n = n,
res_var = ruv
) %>%
mutate(EVID = 0, AMT = 0, MDV = 0, CMT = 1) %>%
select(ID = id, TIME = t, CMT, DV = y, AMT, EVID, MDV)
doses <- regimen_to_nm(
regimen,
n_ind = n
)
## Combine observed data and dose data
simdat <- bind_rows(doses, conc) %>%
arrange(ID, TIME)
## Create nlmixr model object
f <- pkpdsim_to_nlmixr(
model = mod,
parameters = par,
omega = c(0.1, 0.05, 0.1),
res_var = list(prop = 0.1, add = 0.1),
log_transform = TRUE
)
## Perform fit using nlmixr (SAEM)
fit <- nlmixr(
object = f,
data = simdat,
est = "saem"
)
fit
## ── nlmixr² SAEM OBJF by FOCEi approximation ──
##
## Gaussian/Laplacian Likelihoods: AIC(fit) or fit$objf etc.
## FOCEi CWRES & Likelihoods: addCwres(fit)
##
## ── Time (sec fit$time): ──
##
## setup covariance saem table compress other
## elapsed 0.002648 0.018006 10.962 0.083 0.028 1.769346
##
## ── Population Parameters (fit$parFixed or fit$parFixedDf): ──
##
## Est. SE %RSE Back-transformed(95%CI) BSV(CV%) Shrink(SD)%
## logCL 1.57 0.0399 2.54 4.81 (4.45, 5.2) 20.6 25.7%
## logV 3.92 0.0548 1.4 50.2 (45.1, 55.9) 27.7 26.9%
## err_prop 0.212 0.212
## err_add 1.5 1.5
##
## Covariance Type (fit$covMethod): linFim
## Correlations in between subject variability (BSV) matrix:
## cor:eta_V,eta_CL
## 0.689
##
##
## Full BSV covariance (fit$omega) or correlation (fit$omegaR; diagonals=SDs)
## Distribution stats (mean/skewness/kurtosis/p-value) available in fit$shrink
## Information about run found (fit$runInfo):
## • 'f' has the following user-defined boundaries: err_prop, err_add which are ignored in 'saem'
## Censoring (fit$censInformation): No censoring
##
## ── Fit Data (object fit is a modified tibble): ──
## # A tibble: 200 × 16
## ID TIME DV PRED RES IPRED IRES IWRES eta_CL eta_V y A1
## <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 8 19.7 13.9 5.84 17.1 2.62 0.669 -0.239 -0.127 17.1 756.
## 2 1 23.5 4.85 3.15 1.70 4.54 0.310 0.174 -0.239 -0.127 4.54 201.
## 3 1 25 38.0 29.9 8.16 35.1 2.90 0.383 -0.239 -0.127 35.1 1554.
## # ℹ 197 more rows
## # ℹ 4 more variables: CL <dbl>, V <dbl>, tad <dbl>, dosenum <dbl>